Element dependence of enhancement in opticsemission from laser-induced plasma under spatialconfinement
نویسندگان
چکیده
dependence of enhancement in optics emission from laser-induced plasma under spatial confinement" (2014). Faculty Publications from the Department of Electrical Engineering. Paper 228. In this study, the element dependence of spatial confinement effects in LIBS has been studied. Hemispheric cavities were used to confine laser-induced plasmas from aluminum samples with other trace elements. The enhancement factors were found to be dependent on the elements. Equations describing the element-dependent enhancement factors were successfully deduced from the local thermodynamic equilibrium conditions, which have also been verified by the experimental results. Research results show that enhancement factors in LIBS with spatial confinement depend on the temperature, electron density, and compression ratio of plasmas, and vary with elements and atomic/ionic emission lines selected. Generally, emission lines with higher upper level energies have higher enhancement factors. Furthermore, with enhancement factor of a spectral line, temperatures and electron densities of plasmas known, enhancement factors of all the other elements in the plasmas could be estimated by the equations developed in this study.
منابع مشابه
The effect of self-absorption correction using internal reference on determining heavy metals concentration by laser induced breakdown spectroscopy
The identification and concentration of heavy metals, which may be so harmful for the body, is determined by the method of calibration-free laser-induced breakdown spectroscopy using a special strategy. First, the plasma temperature is obtained using the Boltzmann plot. Then, a line with an inappreciable self-absorption is considered for each element as the reference. The modified intensities o...
متن کاملOptimum driving a Z-pinch for soft X-Ray lasers
A capillary plasma z-pinch as an alternative active medium of soft X-Ray lasers was studied experimentally and theoretically. The theoretical analysis was based on the self consistent solution of the so called “snow plow” model. The dynamics of pinched plasma is determined by the capillary parameters and by the time dependence of electrical current passing through it. The current time dependenc...
متن کاملOptical Opacity of Laser Induced Plasma in Distilled Water with NaCl and TiO2 Nanoparticles Impurities
In this paper, the dynamic behavior of laser induced optical breakdown in impure water was studied by using a pump- probe technique. The plasma was induced by a 1064 nm Nd:YAG laser pulse (with pulse duration ~10 ns) in distilled water with two types of impurities: (I) a solution (highly diluted salt water as a conductor) and (II) a colloidal (TiO2 in colloidal nanoparticle form as a dielectric...
متن کاملSize Distribution Measurement of Candle\'s Soot Nanoparticles by Using Time Resolved Laser Induced Incandescence
Time resolved laser induced incandescence (LII) technique is used to measure size distribution of soot nanoparticles of candle's flame. Pulsed Nd:YAG laser is used to heat nanoparticles to incandescence temperature and the resulting signal is measured. Mass and energy balance equations are numerically solved to calculate temperature of soot particles in low fluence regime. Assuming Plank black ...
متن کاملInfluence of Grating Parameters on the Field Enhancement of an Optical Antenna under Laser Irradiation
In this study, a new approach for simulation of electric field enhancement ofplane wave laser around optical antenna was used to convert free-propagating opticalradiation to localized energy. A tapered gold tip design as a novel geometry of opticalantenna is introduced and numerically analyzed based on particle swarm optimization(PSO) by solving the Maxwell equations wit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014